Safety Technology in Sports

Safety Technology Shit Accidents happen. Nobody plans for them to happen. But they do. The thought of “what if…” can be quite frightening, especially for people with some form of anxiety disorder. So if you are going for an overseas holiday, you might take up a travel insurance; if you are a school teacher bringing kids out for an excursion, you might prepare a risk management plan before that; and if you are organising a football competition, you will want to ensure that you got first aiders or sports trainers during the game. For protection, athletes wear safety equipment such as helmets, mouth guards, body armour, braces, goggles, gloves etc to reduce the risk of injury and possibly death. But if one considers the theory of risk homeostasis, athletes may go harder or play with less caution because of the protective gear and thus negates the effect. Lately engineers/designers/innovators have resorted to using various sensor and wireless technologies to help manage or prevent serious injuries in sport. We will have a look at a couple of these technologies that have been developed.

Managing concussions

Riddell-helmet_x600

Riddell’s built-in sensors

Wearing helmets are only good for protecting against skull fractures but not brain concussions. The next best thing to do is to measure the amount of impact and deduce if that might cause a concussion. The first helmet with a comprehensive impact detection system was Riddell. The Riddell HITS technology helmet is embedded with multiple sensors that measure the magnitude and direction of impacts to a player’s head. The impact data is transmitted wirelessly to a computer at the bench where it is analysed to determine the likelihood that the player has a concussion. This helps coaches and medical staff decide whether or not to take a player out of a game or the next few games.

After Riddell, a couple other companies like Brain sentry and Shockbox came up with (cheaper and) more versatile solutions. Basically, they developed wireless sensor devices that can be mounted on your own sports helmet (whether it’s Gridiron, Hockey, Lacrosse, Snow sports etc). The Brain sentry sensor works by flashing a red light when an impact over a certain threshold is detected, and that is an indication that the player should get some medical attention – a simple and straightforward system. The Shockbox sensor sends out impact data directly to the coach’s smart phone via bluetooth and the smart phone app allows the coach to monitor all the athletes at once for dangerous hits. How do they decide what amount of ‘g’ is too much? Well research by Greenwald et al and Broglio et al showed that most concussions happen between 70-100g, so any impact above 70g => possible concussion. HelmetSensors There are a  few other head impact sensors that work on a similar concept but worn slightly differently (on/in the head). The i1 Biometrics Impact Intelligence System is a mouthguard with built-in sensors, while the Impact Indicator 2.0 is a chin strap also designed with sensors that measures high accelerations. One thing worthy to note about the i1 Biometrics mouthguard is their shock absorbing material Vistamaxx that is also customisable to every athlete’s mouth.

ImpactDetection2If you google “head concussion sensors”, you will find a few other similar products that is entering the market soon. The bottom line is, they all identify impacts that are over the “safe threshold” and athletes can be kept (safe) on the bench instead of getting a second hit which could be deadly. But to really know if an athlete had a concussion, they still need to have a CT scan or use this electromagnetic coil that is a cheap substitute.

Preventing drowning

There is a shocking number of people who die or become permanently disabled because of drowning. Even with lifeguards or in cases where children are playing in the water with adult supervision, drowning could still happen. That’s because it only takes 20 seconds for a child to drown underwater unnoticed and 1 minute for an adult. Which brings forth the need for drowning prevention technology.

Aqauatic Safety Concepts LLC patented an Electronic swimmer monitoring system that consist of wearable sensors (worn on swimmers) that measures time of submersion and a monitoring system  at the pool or lake that detects drowning risks and alerts the lifeguards on duty.

WahoooSMS_LakeFacility

The wearable sensor can be worn as a headband or attached to a swimmer’s goggles or swimming cap. The sensors send out a distress signal when submersion is past a safety limit, the signal is picked up by highly sensitive Hydrophone Receivers mounted in the lake or pool which then translates to an audio and visual alarm on land alerting lifeguards or  pool supervisors. In lakes or ponds where the water is not clear, a mobile receiver or Swimmer Locator can be used by the lifeguard to quickly find the distressed swimmer. A Control Tablet can also be used by the lifeguard to monitor status of swimmers in the facility.

But for folks who have a small home pool and don’t need such an elaborate system, there are a couple of choices for small portable systems, like the Safety Turtle and the SEAL Swim Safe. Both work on a rather similar concept: swimmer wears a wearable sensor that detects submersion and is monitored by a portable base station that runs on batteries.They both also use names of sea animals! Apart from that, they are actually quite different with two main differences:

  1. The Safety Turtle sensor is a wearable wrist band whereas the SEAL is a wearable neck band.
  2. Safety Turtle developed separate systems/devices for adults and pets; while the SEAL designed four different safety levels on the band, starting from an immersion alarm for the non-swimmer to a more complex triggering mechanism/algorithm for safeguarding elite swimmers.

DrowningDetectionTechWhen asked why the neck band design was used for the SEAL (which on first glance appears to be an awkward swimming accessory), the CEO and Co-inventor, Dr Graham Snyder said the sensor/antenna had to be in close proximity of the nose and mouth for the detection to be accurate; and tests with swimmers confirmed that having it at their neck was not as noticeable as they thought nor did it restrict swimming.

In fact, because the SEAL was designed to be used by swimmers of different abilities, one of the biggest challenge the developers had was preventing false alarms in every safety level and making sure that drowning detection is highly accurate and timely. Going forward, the team that brought out SEAL is also planning to add other features including GPS, two way communication and monitoring physiological parameters.

Even with all these terrific wireless sensor technologies developed for keeping sports safe,   the most critical component is still human intervention – coaches and medical staff to identify a possible concussion, and vigilant lifeguards and parents to note dangers and distress in swimmers. Without them those technology will just be another piece of accessory.

Thanks for reading and stay safe!

Swimming with the times

InstabeatSwimming is one of the top priority sports in Australia and has been one of the most successful sports in the international arena. As such there’s a lot of attention put into improving the performance of athletes. In fact, for those who are new to this blog, research in swimming performance is one of the focus areas of Queensland Sports Technology Cluster (QSTC), and you will find some recent published work here and some related blog posts about them here. There has also been lots of work done in various research institutes in Australia and here are some notable ones in the last 4-5 years:

1110-swim-research-mm438534-044103

Mini-Traqua in action

The AIS itself has set up the Aquatic Testing, Training and Research Unit (ATTRU), where there has been even more research and testing done on swimming research, often working in tandem with research institutes mentioned earlier above. These and other similar type of research and innovation is what will give the Australian swimmers the edge to win on the international stage. Some of these research outcomes stay at the elite level of sport because they may not be relevant to the casual swimmers or do not have any commercial application or they are just ‘secret squirrel’ stuff. But some of the developed technology do get commercialized, though it may take a while before they get released into the public, but they do.

Commercialized Sports TechSo what kind of technologies/gadgets are available to everyday swimmers today?

1. Lap and stroke counting. How many times have you swam in a pool and lost track of the number of laps you covered? It can be pretty annoying. That’s why engineers developed swimming specific wrist watches that counts strokes and laps. These watches have motion sensors that enable them to count strokes, laps, and even estimate speeds and distances. Some of these include: the FINIS Swimsense, the Swimovate Poolmate, the Speedo Aquacoach, and the Garmin swim. The Garmin Swim particularly could even identify the type of stroke (front crawl, butterfly or breast stroke).

2. Music while swimming. One way to do it is to blast music at the swimming pool (assuming its your own pool, or everyone else at the pool likes your taste of music). The other option is to use waterproofed mp3 players. Some companies have developed swimming specific mp3 players, some applied waterproofing technology on existing devices, some made waterproof cases. Most of them did not stray far from the original mp3 player designed for land dwellers, all except the FINIS SwimP3 which used Bone conduction technology for audio transmission instead of earphones. If anyone is keen on swimming with music, they should check out DCrainmaker’s post comparing all (most of) the swimming mp3 players.

finis-aquapulse-in-depth-review-32-thumb

DCRainmaker with the AquaPulse

3. Heart Rate monitoring. For the more serious athletes who want to monitor their heart rates to keep track of how hard they are training (or if they are training in the correct zone), there are two options available in the market right now – Heart rate belts and Heart rate ear clips. Heart rate chest belts are a pretty common training accessory for most athletes, but not all heart rate monitoring (HRM) belts will work in the water. For example, HRM sensors that transmits via bluetooth (or any higher frequencies) will not work in water. So if you want to use a HRM chest belt for swimming, make sure they transmit in water (i.e. lower frequencies). As a guide, Polar sensors and the PoolMate HRM sensors will work. The alternative to chest belts is ear clips, and the only product in the market is the FINIS AquaPulse which uses infrared sensors to monitor capillary blood flow at your earlobes. The advantage of using the ear clip (I believe) is it is more secure than the chest belt which tends to slip while swimming thus losing heart rate readings. Although I can’t imagine the ear clip sensor being very comfortable during swimming.

4. GPS. This is mainly for open water swimming. Tracking where you have swam in the open ocean/sea/lake/river/pond. Many sports watches (targeted at runners and triathletes)  have a built-in GPS module. That’s your Garmin, Suunto, Timex, Polar, Magellan, Nike etc etc. But one GPS sports watch that stands out is the Leikr, because it actually puts the map on your wrist. Coloured maps! It’s not officially out in the market yet because it started as a Kickstarter project, but it has been successfully funded so it won’t be long. Would you really need the maps? It depends and I think it’s arguable.

5. Performance feedback. The traditional way of getting feedback is to have a coach scream at you. But with all these gadgets that count your stroke rate per lap, calculates how fast you swim and monitors how hard (heart rate) you are training, a swimmer can train without a coach yelling at him/her every session. These devices can tell you how you are performing. Since most of the mentioned devices are watches, the main feedback form is displaying all the calculated statistic on the screens. The one device that sets itself apart is the FINIS Aquapulse which used its Bone Conduction technology (what they used for their swimming mp3 player) to provide audio feedback of your heart rate. Saves you the trouble of trying to catch a glimpse of your watch face. Too bad it doesn’t work together  with their swimsense watch to also give you audio feedback of how many laps you swam and how fast you are swimming. Although that might make it worse than having a coach yelling…

So just when you think: that should be pretty much what swimmers need to help them train; along comes Instabeat – a heart rate sensor that is mounted on your goggles (and any other goggles), measures the laps, turns, breathing pattern, and gives you heads-up visual feedback of your training. Other than music and GPS, it does most of the things mentioned above. But how is it different from the rest?

  • For one, it measures heart rate from your temporal artery using optical sensors (which is patent-pending). 
  • Secondly, it becomes part of your goggles, so you are not wearing or clipping on an extra thing on your body.
  • Thirdly, it determines your breathing pattern. This is something new.
  • Lastly, it gives you real-time visual feedback of your heart rate training zone so you know if you are meeting your goals.

What led Hind Hobeika (Instabeat founder) to develop this was her deep dissatisfaction with existing heart rate monitors in the market. Utilising her swimming experience and engineering knowledge, she went through several designs, prototyping and testing them and the final result is this revolutionary heads-up display design.

Left: Initial designs of the Instabeat; Right: The final Instabeat design

Some of the challenges the Instabeat team faced included getting the right data from the sensors, coming up with a design that could fit all the different goggles, and not forgetting the challenge of making the sensor waterproof – the nemesis of all wearable technology. And now that they are past those product design challenges, they face the next challenge which is to bring it to market. They have decided to go through Indiegogo to crowdsource funds and you can support them here. The response looks positive so far and you know the Instabeat team is a bunch of forward thinkers because they have already planned a next version which includes wireless (bluetooth) data transfer and syncing with your smartphone. I even found out [Spoiler alert] that they would explore adding GPS for open water swimming and possibly make a version compatible with other eyewear, i.e. sunglasses. Sounds like the Sportiiiis could be having some competition in the near future.

In the meantime, I leave you with Instabeat’s pitch on Indiegogo:

Thanks for reading!