A Look at Smart Balls

Tracking how fast a ball was kicked or thrown used to be done with an external device – it could be a speed radar or a high speed camera or maybe even a very trained (and experienced) eye. However, in the last 5-6 years, more and more engineers and scientists have tried to put some form of sensors inside the balls to measure linear velocity, spin velocity, spin axis. This has mostly been made possible with advanced developments in microelectromechanical sensors (MEMS), where accuracy and measurement range has increased significantly (while still keeping the small form factor). Another 2 tech contributions that helped keep the sensors (more permanently) in the balls are wireless connectivity (Bluetooth or Wifi) with the micro-controllers and wireless charging.

Smart Ball Construction

Although the electronics is key to measuring movement signals and processing, there is still the very important task of holding those components (sensors + micro-controller + wireless modules + battery) inside the ball. Let’s call all those components the core. So while designing a method to secure the core within the ball, one has to consider the weight and position of the core and how it affects the centre of mass of the ball. The method has to be robust enough since the ball will take lots of impacts as it’s kicked or thrown or bounced. The method of securing the core will also affect or determine how the ball is constructed. Here’s a look at some of the different type of “smart” balls and their construction:

Smart Basketball: 94Fifty

94Fifty

Image from their patent file

The way that the 9DOF sensor is built into the 94Fifty ball is rather unique (thus the patent). According to their patent application, there is an inner cavity on the surface of the inside of the ball, which is purposed for a casing to house the electronic components (core). The casing is built with a flexible material such that the walls can flex with the pressure difference between the inside of the bladder and the inside of the housing. The patent application also mentions providing access for battery charging but that was probably the early version. The new version is built with Bluetooth connectivity and wireless charging.

The ball is constructed according to the official size and weight which is 29.5 inches (749.3mm) and 22 ounces (623.7g). So with the extra weight added from the core, the designers made adjustments to the enclosure material so that the overall weight is close to the standard weight, and more importantly, the weight distribution is compensated so it spins like a standard ball. For example, if the core is positioned at the top of the ball (see image above), and the valve is placed 180 degrees from the core, the extra weight would be added around the valve until the balance is achieved.

Smart Soccer ball: adidas micoach

adidas miCoach Smartball

adidas’ smart ball is designed with its core positioned within the ball and held there by what looks like 12 sets of supports. The core is positioned or suspended right in the centre of the ball, and the supports are meant to be rigid so that the core is always in the dead centre. There doesn’t seem to be any patent related to the method of supporting the core but there was a patent with regards to the electrical wiring within the ball. The patent basically describes how the wiring is arranged along the bladder wall to interconnect two electronic devices. It also mentions that the electronic components are arranged in such as way that the ball is balanced and doesn’t affect playing properties of the ball. According to the adidas page, the core consists of only a tri-axial accelerometer. There is also wireless charging with their custom induction-charging stand. The induction coils would likely be placed along the bladder wall instead of in the core.

Smart Cricket ball

The Sportzedge group at RMIT developed an instrumented cricket ball for measuring the spin rate and calculating the position and movement of the spin axis (link to the conference paper). Due to the high spin rates of wrist spinners (up to 42 rps or 15,120 deg/s), typical off the shelf gyroscope sensors can’t manage that measurement range. What this smart cricket ball has are three high-speed gyros that can measure +/- 20,000 deg/s, one for each axis. This ball is not built in the typical manufacturing process. In order to house the electronics, meet weight requirements, and keep it balanced, 2 solid halves of the ball were designed and CNC machined from the material Ureol or RenShape® BM 5460 which had the right density and hardness. Eight holes within the ball allowed for additional masses to be inserted to balance the ball. According to the paper, this design is an initial prototype and it is still not robust enough to be hit by a cricket bat. But it is fully capable of measuring spin rates during fast bowling. Subsequent versions will be more sturdy and also include wireless charging.

Screen Shot 2015-02-15 at 8.17.23 pm

Instrumented cricket ball  (source: Fig 1 of the research paper)

Smart Oval Ball

Screen Shot 2015-02-15 at 2.37.05 pm

Smart AFL ball

The same team that built the smart cricket ball also developed a smart AFL ball to assess angular flight dynamics and precision of kick execution. The same electronics (high-speed gyros) that were built into the smart cricket ball was also incorporated into this smart oval ball. The main difference is, this oval ball is made with two bladders that sandwich the core electronics, keeping them right in the middle of the ball. The bladders were inflated simultaneously to ensure a more even distribution of pressure.  It was noted in their paper that the advantage of using an inflatable bladder (instead of replacing it with expanded polystyrene beads) is that it allows for realistic kicking whereas the foam beads will absorb too much energy thus dampening the performance. Other than the smart AFL ball, a recent patent search found another American style football that is built with an electronic circuit coupled to an inflatable bladder. Interestingly, the football in this patent is designed intentionally with the electronics causing imbalance, unlike the above designs where the creators made sure their balls are balanced. Even though Wilson Sporting Goods has been granted this patent, there has yet to be any news of them releasing an instrumented oval ball. This might be something to look out for?

Screen Shot 2015-02-22 at 9.57.14 pm

Ball Movement Measurements

No smart ball is complete if there are no “smarts” involved. The acceleration and/or angular velocity that is measured do not mean much if they are not processed and analysed. So firstly, the inertia sensors would require calibration – to ensure that the measurements are linear and accurate or at least corrected based on a benchmark device. Then mathematical models would be derived to determine the parameters for analysis; parameters such as spin rate, spin axis, speed, timing, ball flight path, angles, point of kick, bounces etc.

Also, to ensure that relevant data is processed accurately, certain “markers” or references are put in place to indicate when ball movement needs to be analysed and how it should be analysed. For the smart cricket and AFL ball developed by RMIT, as they are still in the research stage, a lot of the sensor measurements, signal processing, calculations and analysis are done manually. However for the commercial products like 94Fifty and the micoach smart ball, they have developed algorithms as well as guided user interface and instructions to make sure that each throw or bounce or kick is analysed accurately. In both cases, the interfaces and algorithms come in the form of an iPhone or iPad app. Here’s a breakdown of how each ball does it:

Screen Shot 2015-02-28 at 9.29.43 pm

Basically to analyse a kick with the adidas micoach ball, the micoach app needs to be turned on and connected to the ball via bluetooth. Then after the ball is positioned stationary on the ground, the user has to select his/her kicking foot and tap on the ‘Kick it’ screen before executing the kick. One condition for getting the parameters measured is to kick the ball at least a metre off the ground and for it to travel at least 10m. No bouncing or rolling kicks. 

Screen Shot 2015-02-28 at 7.16.33 pm

Similarly the 94Fifty ball requires its app to be turned on and connected via bluetooth for the shots to be measured. For measuring shots, the user’s height needs to be entered into the app as well as the distance where the user is shooting from. There are options in the app to utilise a shooting machine or a user can practice with a training partner who can pass the ball after each shot. The only condition is that the pass has to be a chest pass for the subsequent shot to be recognised by the app. There are also some workouts or skill trainings that allow users to practice on their own and ball handling tracking options.

Screen Shot 2015-03-01 at 10.42.39 pm

The Coaching Element

All these sensor-laden balls and their accompanying apps with smart algorithms aims to help users become better players – whether it is improved technique in kicking or shooting or training of muscle memory to perform proper mechanics over and over.

The 94Fifty app provides real-time audio feedback for each shot that a user makes, whether the focus is on shot arc angle or shot speed or shot backspin. Based on ideal stats (e.g. arc angle of 52 deg and backspin of 180rpm), the user can fine-tune his/her technique to achieve the right angle/speed/backspin. This user shows how by utilising the app’s feedback and capturing his practice on video at the same time, he could analyse his shot mechanics and identify how he could correct his shooting technique.

Likewise, the adidas micoach smart ball app not only measures each kick with ball speed, spin, spin angle, ball strike location & flight path, it also provides “Coach Notes” with recommendations on how the user can boost each specific parameter. A video option within the app allows a second person to capture the user’s kick using the iPhone/iPad’s camera so that the user not only gets the kick statistics but also visual playback of the kick.

Bottom Line

Designing a smart ball that analyses a player’s performance is definitely a complicated process. Not only must the instrumented ball behave like a normal standard ball with proper balance, but the electronics incorporated within the ball also have to be held robustly so that they don’t break under impact and the sensor data remains repeatable and reliable. Then there is the task of working out what parameters can be determined from the sensor data, if constraints/markers/references should be put in place to ensure accurate measurements, and how those parameters are helpful for improving an athlete’s skills and techniques.

Even with a properly designed ball that measures all the critical performance parameters accurately, it’s probably still not a complete coaching system. What the ball (and app) lacks is the ability to know (and break down) what exactly the athlete did in his kick or shot to achieve the numbers as calculated by the app. For example, in football, what affects a kick include foot speed, which part of the foot kicked the ball, and the amount of upper-body movement; and in basketball, a few things that influence a free throw include: the amount of trunk and knee flexion, shoulder flexion and elbow extension. These range of movements could be tracked with either video analysis (such as Kinovea which is markerless) or a 3D motion tracking system (such as Vicon which requires markers), or wearable sensors (such as SabelSenseXSens or this new sensor embedded compression suit).

In a nutshell, smart balls are definitely great coaching tools. But if combined with athlete movement tracking, it would give a lot more insight to improving the athlete’s shot performance.

Safety Technology in Sports

Safety Technology Shit Accidents happen. Nobody plans for them to happen. But they do. The thought of “what if…” can be quite frightening, especially for people with some form of anxiety disorder. So if you are going for an overseas holiday, you might take up a travel insurance; if you are a school teacher bringing kids out for an excursion, you might prepare a risk management plan before that; and if you are organising a football competition, you will want to ensure that you got first aiders or sports trainers during the game. For protection, athletes wear safety equipment such as helmets, mouth guards, body armour, braces, goggles, gloves etc to reduce the risk of injury and possibly death. But if one considers the theory of risk homeostasis, athletes may go harder or play with less caution because of the protective gear and thus negates the effect. Lately engineers/designers/innovators have resorted to using various sensor and wireless technologies to help manage or prevent serious injuries in sport. We will have a look at a couple of these technologies that have been developed.

Managing concussions

Riddell-helmet_x600

Riddell’s built-in sensors

Wearing helmets are only good for protecting against skull fractures but not brain concussions. The next best thing to do is to measure the amount of impact and deduce if that might cause a concussion. The first helmet with a comprehensive impact detection system was Riddell. The Riddell HITS technology helmet is embedded with multiple sensors that measure the magnitude and direction of impacts to a player’s head. The impact data is transmitted wirelessly to a computer at the bench where it is analysed to determine the likelihood that the player has a concussion. This helps coaches and medical staff decide whether or not to take a player out of a game or the next few games.

After Riddell, a couple other companies like Brain sentry and Shockbox came up with (cheaper and) more versatile solutions. Basically, they developed wireless sensor devices that can be mounted on your own sports helmet (whether it’s Gridiron, Hockey, Lacrosse, Snow sports etc). The Brain sentry sensor works by flashing a red light when an impact over a certain threshold is detected, and that is an indication that the player should get some medical attention – a simple and straightforward system. The Shockbox sensor sends out impact data directly to the coach’s smart phone via bluetooth and the smart phone app allows the coach to monitor all the athletes at once for dangerous hits. How do they decide what amount of ‘g’ is too much? Well research by Greenwald et al and Broglio et al showed that most concussions happen between 70-100g, so any impact above 70g => possible concussion. HelmetSensors There are a  few other head impact sensors that work on a similar concept but worn slightly differently (on/in the head). The i1 Biometrics Impact Intelligence System is a mouthguard with built-in sensors, while the Impact Indicator 2.0 is a chin strap also designed with sensors that measures high accelerations. One thing worthy to note about the i1 Biometrics mouthguard is their shock absorbing material Vistamaxx that is also customisable to every athlete’s mouth.

ImpactDetection2If you google “head concussion sensors”, you will find a few other similar products that is entering the market soon. The bottom line is, they all identify impacts that are over the “safe threshold” and athletes can be kept (safe) on the bench instead of getting a second hit which could be deadly. But to really know if an athlete had a concussion, they still need to have a CT scan or use this electromagnetic coil that is a cheap substitute.

Preventing drowning

There is a shocking number of people who die or become permanently disabled because of drowning. Even with lifeguards or in cases where children are playing in the water with adult supervision, drowning could still happen. That’s because it only takes 20 seconds for a child to drown underwater unnoticed and 1 minute for an adult. Which brings forth the need for drowning prevention technology.

Aqauatic Safety Concepts LLC patented an Electronic swimmer monitoring system that consist of wearable sensors (worn on swimmers) that measures time of submersion and a monitoring system  at the pool or lake that detects drowning risks and alerts the lifeguards on duty.

WahoooSMS_LakeFacility

The wearable sensor can be worn as a headband or attached to a swimmer’s goggles or swimming cap. The sensors send out a distress signal when submersion is past a safety limit, the signal is picked up by highly sensitive Hydrophone Receivers mounted in the lake or pool which then translates to an audio and visual alarm on land alerting lifeguards or  pool supervisors. In lakes or ponds where the water is not clear, a mobile receiver or Swimmer Locator can be used by the lifeguard to quickly find the distressed swimmer. A Control Tablet can also be used by the lifeguard to monitor status of swimmers in the facility.

But for folks who have a small home pool and don’t need such an elaborate system, there are a couple of choices for small portable systems, like the Safety Turtle and the SEAL Swim Safe. Both work on a rather similar concept: swimmer wears a wearable sensor that detects submersion and is monitored by a portable base station that runs on batteries.They both also use names of sea animals! Apart from that, they are actually quite different with two main differences:

  1. The Safety Turtle sensor is a wearable wrist band whereas the SEAL is a wearable neck band.
  2. Safety Turtle developed separate systems/devices for adults and pets; while the SEAL designed four different safety levels on the band, starting from an immersion alarm for the non-swimmer to a more complex triggering mechanism/algorithm for safeguarding elite swimmers.

DrowningDetectionTechWhen asked why the neck band design was used for the SEAL (which on first glance appears to be an awkward swimming accessory), the CEO and Co-inventor, Dr Graham Snyder said the sensor/antenna had to be in close proximity of the nose and mouth for the detection to be accurate; and tests with swimmers confirmed that having it at their neck was not as noticeable as they thought nor did it restrict swimming.

In fact, because the SEAL was designed to be used by swimmers of different abilities, one of the biggest challenge the developers had was preventing false alarms in every safety level and making sure that drowning detection is highly accurate and timely. Going forward, the team that brought out SEAL is also planning to add other features including GPS, two way communication and monitoring physiological parameters.

Even with all these terrific wireless sensor technologies developed for keeping sports safe,   the most critical component is still human intervention – coaches and medical staff to identify a possible concussion, and vigilant lifeguards and parents to note dangers and distress in swimmers. Without them those technology will just be another piece of accessory.

Thanks for reading and stay safe!